Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Metab ; 80: 101864, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159883

ABSTRACT

OBJECTIVE: Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposure induces changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period on neuronal plasticity and cardiometabolic health in adult offspring. METHODS: C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months resulting in 4 treatment groups that underwent cardiometabolic assessments. DNA and RNA were extracted from the hypothalamus to perform whole genome methylation, mRNA, and miRNA sequencing followed by bioinformatic analyses. RESULTS: Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed HCD in adulthood exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA, while genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. These data were supported by our findings of astrogliosis, microgliosis and increased microglial activation in programmed males in the paraventricular nucleus (PVN). Programming induced a protective effect in male mice fed HCD in adulthood, resulting in lower protein levels of hypothalamic TGFß2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed males. Although TGFß2 was upregulated in male mice exposed to HCD pre- or post-natally, only blockade of the brain TGFß receptor in RD-HCD mice improved glucose tolerance and a trend to weight loss. CONCLUSIONS: Our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia associated with hypothalamic inflammation in mechanisms and pathways distinct from post-natal HCD exposure. Together, our data unmask a compensatory role of HCD programming, likely via priming of metabolic pathways to handle excess nutrients in a more efficient way.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hyperglycemia , Hypertension , MicroRNAs , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Mice , Animals , Male , Diet, Western , Diabetes Mellitus, Type 2/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Epigenesis, Genetic , Hypothalamus/metabolism , Inflammation/genetics , Inflammation/metabolism , Hyperglycemia/metabolism , Glucose/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular Diseases/metabolism
2.
Toxicon ; 216: 115-124, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835234

ABSTRACT

Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.


Subject(s)
Escherichia coli Infections , Shiga Toxin 2 , Animals , Cytokines/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/toxicity , Mice , Shiga Toxin/metabolism , Shiga Toxin 2/toxicity , Thalamus/metabolism , Trihexosylceramides
SELECTION OF CITATIONS
SEARCH DETAIL